O minicurso "Aprender ciência pode ser gostoso" será realizado na terça-feira em paralelo a sessão de "Vácuo na Indústria". Este curso é voltado para professores e estudantes do Ensino Médio.
Mais informações na página Minicursos.
Luiz Antônio Alves - UDESC/CESFI
Kita Xavier – CREA-SC
José Fernando Fragalli – Reitor UDESC
Nazir Monteiro – Presidente da SBV
Recepção
Registro e entrega de credenciais
Abstract
Hydrogen powered airplane through hydrogen produced electricity or directly combusted jet engines can dramatically reduce carbon emissions and is recognized as the most promising future green aviation transportation. The presentation will give an introduction to the recent development and the history of hydrogen aircraft in different countries over the world and some critical technologies on hydrogen aircraft such as proton exchange membrane fuel cells and hydrogen powered engines, as well as their relevant materials with hydrogen embrittlement and electrochemical corrosion protections. Liquid hydrogen storage is also briefly introduced.
All inorganic thin film elelctrochromic materials and multilayer devices are introduced on their fabrication methods, properties on materials fundamentals and electrochemical cycling, their multi-functional applicable performances on solar energy, infrared and other electromagnetic wave spectra modulations. Typical multilayer electrochromic devices Glass/ITO/WO3/LiTaO3/NiOx/ITO and PI/Al/WO3/LiTaO3/NiOx/ITO have been monolithically fabricated layer by layer on a home-made multi-target magnetron sputtering machine. The maximum transparency and reflectance difference in the visible light spectrum region between coloration and bleaching states reaches as high as 80%. Within infrared range, we also get about 0.4-0.6 emissivity modulations recently.
Some vacuum magnetron sputtering and cathodic arc coating machines have innovatively home designed, optimized and manufactured deliberately for fabricating our multilayer functional electrochromic thin film devices, as well as serving our electrochemical corrosion resistant nitride and carbide protective coatings for metallic bi-polar plates in hydrogen fuel cell and water electrolyzer applications.
Brief Introduction about speaker:
Prof. Dr. Diao Xungang is a full professor of physics, material science and renewable energy technologies at School of Energy and Power Engineering, Beihang University, Beijing, China. He has studied and worked at Lanzhou University, Institute of Physical and Chemical Engineering of Nuclear Industry, Tsinghua University, Brazilian Center for Physics Research - CBPF, Brazil, Research Institute of Physics and Chemistry - RIKEN, Japan, Royal Institute of Technology - KTH, Sweden, and Tianjin University. He has published more than 210 academic papers with 3300 citations and H-index 35, been responsible for more than 40 scientific and technological research projects, obtained 12 invention patents, 5 scientific research and education awards on diverse research achievements and university physics teaching in English for both Chinese and foreign students.
Confira os trabalhos na aba apresentação de trabalhos na área do participante.
Abstract:
For many decades, scientists over the world have been working on establishing the conditions in which controlled thermonuclear fusion can become an economically viable energy source. Among the several magnetic concepts proposed to confine thermonuclear plasmas, the tokamak concept is currently the most promising approach for exploiting nuclear fusion. Brazil has the largest tokamak in the southern hemisphere of the planet - the Tokamak à Chauffage Alfvén Brésilien (TCABR), which is operated by the Plasma Physics Laboratory (LFP) of the Institute of Physics of the University of São Paulo (IFUSP). A significant upgrade of TCABR is being designed to make it capable of creating a well controlled environment where the impact of externally applied magnetic perturbations on violent plasma instabilities, termed edge localized modes (ELMs), can be addressed over a wide range of plasma scenarios. The core of this upgrade corresponds to the installation of an innovative set of 108 high current magnetic coils that will be installed inside the vacuum vessel. In addition, graphite protection tiles will be installed to cover more than 95% of the vacuum vessel inner wall in order to protect the coils from the hot plasma. Flush mounted Langmuir probes will be installed in some tiles and will be paired with ball-pen probes for plasma-wall interaction diagnose. The installation of these new components inside the vacuum vessel is expected to significantly increase degassing. To minimize deuterium inventory inside the vacuum vessel, and uncontrolled impurity influx during experiments due to degassing of the newly installed components, a wall conditioning system will also be installed. This system will be composed of a helium DC glow discharge cleaning (GDC) system and a baking system. The GDC system will be composed of 6 retractile electrodes evenly distributed within the vacuum vessel, polarized positively with respect to the grounded vacuum vessel, all connected to the same DC power supply. The baking system will consist of several localized heating elements installed around the vacuum vessel and independently controlled to keep the vacuum vessel and internal components at temperatures as high as 200 degrees Celsius. In preparation for experimental campaigns, a several-day baking of the vacuum vessel at 200 degrees Celsius will be carried out, while 10 minutes of in-between-shots helium GDC are planned. Due to the machine baking, all the internal components, such as the 108 magnetic coils, wall-mounted diagnostics, electrical cables, connections etc., will have to withstand temperatures of about 200 degrees Celsius while still being compatible with ultra-low vacuum. This work will focus on the current status of these developments and future plans.
Currículo:
Prof. Gustavo Paganini Canal é formado em Física pela Universidade Federal do Espírito Santo, onde trabalhou em projetos da PETROBRAS aplicando plasmas de hidrogênio em petróleo. Possui Mestrado pelo Centro Brasileiro de Pesquisas Físicas, localizado no Rio de Janeiro, onde trabalhou no desenvolvimento de reatores de plasmas aplicados a processos nanotecnológicos e em ablação por laser pulsado para a deposição de materiais bio-compatíveis em substratos de titânio utilizados em próteses dentária. É PhD em Física de Plasmas pela École Polytechnique Fédérale de Lausanne, na Suíca, onde trabalhou também no Centre de Recherches en Physique des Plasmas em plasmas gerados por tokamaks. Depois disso foi para os Estados Unidos, onde fez pós-doutorado na empresa americana de tecnologia General Atomics, na divisão de tokamaks e Fusão Nuclear, e trabalhou para o US Department of Energy na Princeton University, mais especificamente no Princeton Plasma Physics Laboratory. Atualmente, o Prof. Canal é Professor Livre-Docente no Instituto de Física da Universidade de São Paulo, é coordenador da área de Física de Plasmas da Sociedade Brasileira de Física, é membro do Conselho Superior do Instituto de Pesquisa Energéticas e Nucleares (IPEN), e membro do comitê internacional do Latin American Workshop on Plasma Physics. Prof. Canal atua, principalmente, na pesquisa de plasmas aplicados à fusão termonuclear controlada a fim de desenvolver formas de produzir energia de forma segura, sustentável e economicamente viável.
Confira os trabalhos na aba apresentação de trabalhos na área do participante.
Resumo:
Será apresentado um histórico do desenvolvimento da linha de pesquisa em tecnologia de plasma aplicada a materiais, especialmente a materiais sinterizados e os equipamentos desenvolvidos e em desenvolvimento, bem como, os recursos humanos formados com especialização na área de plasma. Serão também apresentados os principais cases de sucesso no desenvolvimento de projetos em parceria com empresas, envolvendo tecnologia de plasma. Será ainda discutida a possibilidade da utilização do ambiente reativo obtido em reator híbrido a plasma para gerar novas soluções na área de engenharia de superfície (tanto para aumentar a resistência ao desgaste de componentes mecânicos quanto para obtenção de camadas de baixo coeficiente de atrito), possibilidades em desenvolvimento para obtenção de pós especiais na forma de partículas compósitas e novos materiais metálicos e compósitos particulados sinterizados via sinterização assistida por plasma.
Confira os trabalhos na aba apresentação de trabalhos na área do participante.
Organização: Francisco Tadeu Degasperi (FATEC-SP) e Luciana Sgarbi Rossini (FATEC-SO)
8:00 h – 8:25 h – Atividades da tecnologia do vácuo na indústria. Hélcio Onusic – Instituto de Física da USP.
8:25 h – 8:50 h – Bombas de vácuo secas: aplicações na produção industrial. Achim Lessel – Busch do Brasil Ltda.
8:50 h – 9:15 h – Detecção de vazamentos em sistemas de vácuo industrias - Casos na refrigeração. Fernando Zappelline – Ahestest Ltda.
9:15 h – 9:40 h – Sistemas de vácuo para processos industriais de secagem. Luis Henrique Bonfim Almeida – Edwards Vácuo Ltda.
9:40 h – 10:05 h – Bombas de pré-vácuo secas para processos industriais. Luciano Camacho – Leybold Vácuo Ltda.
Organização: Francisco Tadeu Degasperi (FATEC-SP) e Luciana Sgarbi Rossini (FATEC-SO)
10:30 h – 10:55 h – Componentes auxiliares para melhorar o desempenho dos sistemas de vácuo industriais. Rafael Shiguematsu Amaral – AVACO Ltda.
10:55 h – 11:20 h – A definir. Marcelo Azevedo – Agilent Vácuo Ltda.
11:20 h – 11:45 h – A definir. Tiago Cerqueira – Ulvac Brasil Vácuo Ltda.
11:45 h – 12:10 h – Fabricação de componentes para sistemas de vácuo industriais. Fernando Arroyo – FCA Brasil Ltda.
12:10 h – 12:25 h – Avaliação da sessão Vácuo na Indústria e propostas de melhoria. Francisco Tadeu Degasperi e Luciana Sgarbi Rossini.
Confira os trabalhos na aba apresentação de trabalhos na área do participante.
Confira os trabalhos na aba apresentação de trabalhos na área do participante.
Hydrogen’s integration into modern energy systems brings both significant advantages and critical challenges, particularly for metallurgy. With its high energy density, hydrogen is increasingly vital for sustainable energy and the next energy transition, but the susceptibility of metallic materials to hydrogeninduced degradation remains a major hurdle for both metallurgy and the functional materials that will compose the hydrogen energy infrastructure. The phenomenon of hydrogen embrittlement completes 150 years as it was firstly discovered and reported by the British metallurgist William H. Johnson in 1875 [1]. When hydrogen gas contacts the surface of metals and alloys, it undergoes physisorption-driven dissociative reactions, producing monoatomic hydrogen atoms that can then be chemisorbed into the material. When diffusing within the microstructure of materials, hydrogen interacts with site-specific dependencies and such interactions are reported to be the major cause of hydrogen embrittlement. Over the course of history, a series of theoretical mechanisms have been proposed to explain hydrogen embrittlement, but so far this phenomenon remains poorly understood, particularly considering the persisting limitations in detecting the dynamic action of hydrogen at the microstructural level [2,3]. This plenary talk will introduce the current theoretical mechanisms of hydrogen embrittlement under intense debate by the scientific community and it will show how a better experimental-theoretical understanding remains to be yet performed. The modern challenges that metallurgy is facing towards the development of hydrogen-resistant materials will be also discussed considering the state-of-the-art on the mitigation strategies against hydrogen embrittlement. It will be shown that hydrogen-materials interactions brings materials complexity into a new level where synergistic aspects of plasticity and fracture of materials must be taken into consideration [2]. Despite many advancements over 150 years of history, research gaps persist in establishing effective, long-term solutions for hydrogen-resilient materials. Overcoming these challenges and gaps is essential for the successful and safe deployment of the next green energy transition.
References
[1] W.H. Johnson, On some remarkable changes produced in iron and steel by the action of hydrogen and acids, Nature 11 (1875) 393.
[2] M.B. Djukic, G.M. Bakic, V. Sijacki Zeravcic, A. Sedmak, B. Rajicic, The synergistic action and interplay of hydrogen embrittlement mechanisms in steels and iron: Localized plasticity and decohesion, Eng Fract Mech 216 (2019) 106528.
[3] M.A. Tunes, P.J. Uggowitzer, P. Dumitraschkewitz, P. Willenshofer, S. Samberger, F.C. da Silva, C.G. Schön, T.M. Kremmer, H. Antrekowitsch, M.B. Djukic, S. Pogatscher, Limitations of Hydrogen Detection After 150 Years of Research on Hydrogen Embrittlement, Adv Eng Mater (2024) 2400776.
Biography
Matheus A. Tunes is an Assistant Professor in the Department of Metallurgy at the Montanuniversität Leoben, where he leads the Laboratory of Metallurgy in Extreme Environments. He earned his PhD in Atomic Collisions in Solids and Electron Microscopy from the MIAMI Facilities at the University of Huddersfield (UK) in 2020, following a Master of Science degree in Metallurgical Engineering and Materials Science (2015) and a Bachelor in Physics (2012) from the University of São Paulo (Brazil). With an international career focused on materials in extreme environments, his expertise spans materials for fission and fusion reactors, nuclear microreactors for space and mobile applications, as well as lightweight materials for space applications. He was an ASTRO fellow at the Oak Ridge National Laboratory and, in 2021, received a prestigious Director’s Fellowship from the Los Alamos National Laboratory. He is the 2020 recipient of the Ion Beam Materials and Modifications (IBMM) early career award. In Leoben, he leads a diverse, highly motivated, and internationally recognized research team focusing on materials for thermonuclear fusion reactors, space, hydrogen energy, hypersonic, and corrosion-resistant applications.
Confira os trabalhos na aba apresentação de trabalhos na área do participante.
The International Fusion Materials Irradiation Facility - DEMO Oriented Neutron Source (IFMIF/DONES) is a critical project within the European Union's fusion roadmap. Its primary goal is to test and qualify materials together ITER for use in future fusion reactors, by exposing them to intense neutron irradiation conditions similar to those such as DEMO. The facility features a linear accelerator delivering high-intensity deuterons to an in vacuum hot liquid lithium loop, generating neutrons that produce material damage equivalent to that expected in a fusion reactor.
The vacuum system must maintain high vacuum conditions with high reliability. A comprehensive study and implementation of the vacuum system for the accelerator have been conducted, including vacuum simulations to estimate the expected pressure profile, and the creation of the IFMIF/DONES Vacuum Handbook to standardize the vacuum requirements and hardware for the facility. Valuable insights have been gained from the IFMIF/Engineering Design and Engineering Validation Activities (EVEDA) prototype installation.
Additionally, two vacuum prototypes are being assembled: the Multipurpose Vacuum Accident Scenarios (MUVACAS) to study air inrush scenarios in the accelerator, and the Quick Disconnecting System (QDS) prototype to evaluate the feasibility of remote handling of the interface on the lithium source. The design of the accelerator's vacuum system and future challenges will also be presented.
Acknowledgements
This work has been carried out within the framework of the EUROfusion Consortium, funded by the European Union via the Euratom Research and Training Programme (Grant Agreement No 101052200 — EUROfusion). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Commission. Neither the European Union nor the European Commission can be held responsible for them.
Organização: Francisco Tadeu Degasperi (FATEC-SP) e Luciano do Nascimento Batista (LAPRE-INMETRO)
13:30 h – 13:50 h – A necessidade da metrologia de vácuo na indústria e na ciência. Luciano do Nascimento Batista – LAPRE-INMETRO.
13:50 h – 14:10 h – Instrumentação para a determinação de estanqueidade e para a medição de quantidade de gás. Maurício Oliveira – Empresa TEX Instrumentação Eletrônica.
14:10 h – 14:30 h – A metrologia de vácuo: pressão e quantidade de gás. Hugo Alexandre Garrido Aguiar – Empresa Centro Tecnológico de Metrologia - CTM.
14:30 h – 14:50 h – A metrologia de vácuo para processos industriais e pesquisa. Luís Henrique Bonfim Almeida – Edwards Vácuo Ltda.
14:50 h – 15:10 h – Oficina de Metrologia de Vácuo no Laboratório de Tecnologia do Vácuo – LTV da FATEC-SP. Francisco Tadeu Degasperi – FATEC-SP – CEETEPS e Rodrigo Arakawa – ETEC Professor Horácio Augusto da Silveira – CEETEPS.
15:10 h – 15:30 h – Avaliação da sessão Metrologia de Vácuo e propostas de melhoria. Francisco Tadeu Degasperi e Luciano do Nascimento Batista.
Assembléia
CBrAVIC 2025
Premiação dos melhores trabalhos
Encerramento do evento